- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmadi, Mahshid (4)
-
Yang, Jonghee (3)
-
Kalinin, Sergei_V (2)
-
Sanchez, Sheryl (2)
-
Sanchez, Sheryl L. (2)
-
Dubey, Astita (1)
-
Foadian, Elham (1)
-
Hu, Bin (1)
-
Liu, Yongtao (1)
-
Tang, Yipeng (1)
-
Ziatdinov, Maxim (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sanchez, Sheryl L.; Tang, Yipeng; Hu, Bin; Yang, Jonghee; Ahmadi, Mahshid (, Matter)
-
Foadian, Elham; Sanchez, Sheryl; Kalinin, Sergei_V; Ahmadi, Mahshid (, ACS Materials Au)
-
Sanchez, Sheryl; Liu, Yongtao; Yang, Jonghee; Kalinin, Sergei_V; Ziatdinov, Maxim; Ahmadi, Mahshid (, Advanced Intelligent Systems)In the last several years, laboratory automation and high‐throughput synthesis and characterization have come to the forefront of the research community. The large datasets require suitable machine learning techniques to analyze the data effectively and extract the properties of the system. Herein, the binary library of metal halide perovskite (MHP) microcrystals, MAxFA1−xPbI3−xBrx, is explored via low‐dimensional latent representations of composition‐ and time‐dependent photoluminescence (PL) spectra. The variational autoencoder (VAE) approach is used to discover the latent factors of variability in the system. The variability of the PL is predominantly controlled by compositional dependence of the bandgap. At the same time, secondary factor of variability includes the phase separation associated with the formation of the double peaks. To overcome the interpretability limitations of standard VAEs, the workflow based on the translationally invariant variational (tVAEs) and conditional autoencoders (cVAEs) is introduced. tVAE discovers known factors of variation within the data, for example, the (unknown) shift of the peak due to the bandgap variation. Conversely, cVAEs impose known factor of variation, in this case anticipated bandgap. Jointly, the tVAE and cVAE allow to disentangle the underlying mechanisms present within the data that bring a deeper meaning and understanding within MHP systems.more » « less
An official website of the United States government
